Mathematics Materials Assist. Lecturer HUSHAM IDAN HUSSEIN FIRST CLASS

CHAPTER ONE

1.1 Real Numbers and the Real Line
This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers: are numbers that can be expressed as decimals, such as

3
—3 = —0.75000...

1 _ 033333

;=0
V2 =14142. ..

The real numbers can be represented geometrically as points on a number line called the real line.

I [ I I
1 2

=2 -1 _3 0
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3
The algebraic properties : the real numbers can be added, subtracted, multiplied, and divided (except
by 0) to produce more real numbers under the usual rules of arithmetic.

Rules for Inequalities

If a, b, and ¢ are real numbers, then:
a<bhb=a+c<b+c
a<b=aga—-—c<b—2c¢

a < bande = 0 = ac < be

ol i

a<bandc < 0 = bc < ac
Specialcase:a < b = —b < —a

|
a=0=45>=10

n

1
<a

. .. . |
6. Ifaand b are both positive or both negative, thena < b = b
We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1, 2, 3,4

2. The integers, namely

0, £1, £2, £3,...
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3. The rational numbers, namely the numbers that can be expressed in the form of a fraction , where( m
and n) are integers and n # 0, Examples are:

4 —4 4 200 57
9= 9 = 9> 13- and S7T=-.

EXAMPLE 1 : Solve the following inequalities and show their solution sets on the real line.

6

(@ 2r—1<x+3 (b) —3 <2+ 1 © ——7=5
(a) xx—1<x+3
2y <<x+ 4
*ﬁ—}j
The solution set is the open interval (—o0, 4)
Note that |—a| # —|a|. For example, |—3| = 3, whereas —|3|= —3.Ifa and b

differ in sign, then |a + b| is less than |a| + |b|. In all other cases, |a + b| equals
|a| + |b|. Absolute value bars in expressions like | -3 + 5| work like parentheses: We do
the arithmetic inside before taking the absolute value.

EXAMPLE : lllustrating the Triangle Inequality

|=3 +35|=|2|=2<|-3|+]|5|=8
3 +5[=18[=13] +5]|
|-3 = 5|=|-8] =8 =|-3|+|-5]|

the distance from (x to 0) is less than the positive number a. This means that x must lie between (—a
and a).

' a ' a '
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Absolute Values and Intervals
If @ is any positive number, then

5 |x|=a ifand only if x = *a
. |x|<a ifandonlyif —a <x <a

6
7. |x|>a ifandonlyif x> a or x < —a
8 |x|=a ifandonlyif —a=x=a

9

. |x|=a ifandonlyif x=a or x = —a

EXAMPLE : Solving an Equation with Absolute Values Solve the equation | 2x-3| =7.

Solution By Property 5, 2x — 3 = £7, so there are two possibilities:

x—-3=7 2¢ =3 =7 ithout absolute
2.1- = IU 2.1- = _4 Solve as usual.
x=235 x= -2
The solutions of |2x — 3| = Tare x = 5 andx = —2.

EXAMPLE : Solving an Inequality Involving Absolute Values Solve the inequality.

< 1.

L
I
=t

(@) |2x — 3] =1 () [2x — 3| =1

1.2 Lines, Circles, and Parabolas

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The idea of increase
is also discussed.

Cartesian Coordinates in the Plane

coordinate axes in the plane. On the horizontal x-axis, numbers are denoted by x and increase to right.
On the vertical y-axis, numbers are denoted by y and increase upward as shown

B —— e a, E
1
Frositives w—asxis ~ | 1
_— = .
=z — 1
1
1 o 1
MNemative w-mscis Crrigirn 1
L Mt L L T -
—= - —1 ) 1 \‘\f o 3
p— | — - .
FPuositivie c—@mais
MMemative w—axis .
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Given two points Pi(x, v1) and Pa(xz, y2) in the plane, we call the increments
Ax = x> — x; and Ay = y; — v the run and the rise, respectively, between P, and P>.
Two such points always determine a unique straight line (usually called simply a line)
passing through them both. We call the line P} P5.
Any nonvertical line in the plane has the property that the ratio
rise _ Ay _wm —n

mnin I - X2 — X1
N
y P oL
DEFINITION Slope |
The constant |
|
_rise _ Ay _»m—w |
Tomun T Ay X2 — X I
| ._‘h_\'r
|
I
; Q[.rl.}'.]:
(rumn) |
________ P
Ax’
0
Example

[
- W RE/D

=g

FIdzIUOURE A41.9 T he slopeeee o L s
. o W . s — L —22D =
T T e = — O - = -

That Is, " IMNCreasaes & INITS awier W CIrmese
I reAases & mrmits. T e slopyee ol Lo i1
R = e = =2 — 3 — —3 .
P, " = — A =)
T hat is,  decrneasaes 5 ummnidiis aweaer sy TLrmES W
IS Aasae s <F mraits
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The equation
v =y + mx — x1)

is the point-slope equation of the line that passes through the point (x, v1) and
has slope m.

EXAMPLE 2 Write an equation for the line through the point (2, 3) with slope —3/2.

Solution ~ We substitute x; = 2,y = 3, and m = —3/2 into the point-slope equation

and obtain
_ 3 =3
'1-'-3—5(.r—2), or y= 2x+i§n.
When x = 0. v = 6 so the line intersects the v-axis at v = 6. ]

EXAMPLE 3 A Line Through Two Points

Write an equation for the line through (—2, —1) and (3, 4).

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the Pythagorean
theorem.

Distance Formula for Points in the Plane
The distance between P(x;, vi1) and Q(xz, v2) is

d = V(Ax)? + (Ay)? = Vixa — x1)2 + (2 — )2

This distance 15

..HI
Ly
d= ‘\/|.t3-.r|‘3 + |_‘.'3-.r|‘3
Q(xy: ¥,) C

I
||1.'1 - -Tll Slope m, Fi' Slope ma

|h dha

X+o ¥V I_l \ -
= Oy ) ¢ -f"_'\ X
o 0 /A D a B '

0 x, Ty ' FIGURE 1.15 AADC is similar to
ACDE. Hence ¢ is also the upper angle
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EXAMPLE5  Calculating Distance
(a) The distance between P(—1,2) and O(3, 4) is
VB - ()P + (4 -2 = V@ + 27 = V20 = V45 =2V5,
(b) The distance from the origin to P(x, y) is
\/(_r—l]}z-i-]—l] \/1 +1 [ |

By definition, a cirele of radius « is the set of all points P(x, y) whose distance from
some center C(h, k) equals « (Figure 1.17). From the distance formula, P lies on the circle

if and only if

Vix—hP?+(y — k)P =

S0

(x—h?+ (v — b =d> (1)

Equation (1) is the standard equation of a circle with center (h, k) and radius a. The circle
of radius @ = 1 and centered at the origin is the unit circle with equation

x? +_1.'2 =1.

The Parabola

The Graphof y =ax’ + bx+¢, a#0

Flx, »)

(x—h)? +(y-k?=a?

The graph of the equation y = ax® + bx + ¢,a # 0, is a parabola. The para-
bola opens upward if @« = 0 and downward if @ < 0. The axis is the line

b

X = —E.

The vertex of the parabola is the point where the axis and parabola intersect. Its

x-coordinate is x
in the parabola’s equation.

—b/2a; its y-coordinate is found by substituting x = —b/2a

symmetty
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1.3 Functions and Their Graphs

Functions are the major objects we deal with in calculus because they are key to describing the
real world in mathematical terms. This section reviews the ideas of functions, their graphs, and
ways of representing them.

Functions; Domain and Range

» The area of a circle depends on the radius of the circle.

» The distance an object travels from an initial location along a straight line path depends
on its speed.

In each case, the value of one variable quantity, which we might call y, depends on the value of
another variable quantity, which we might call x. Since the value of y is completely determined
by the value of x, we say that y is a function of x.

y=flx) (“yequals f of x")

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unigue (single) element
flx) e Y to each element x € D.

x - r = )
Input Oruatpaat

(domain) (range)

» The set D of all possible input values is called the domain of the function.
> The set of all values of f(x) as x varies throughout D is called the range of the function.

» The range may not include every element in the set .

- _ . —
T — — —

_— - S
L — X—
- - e \":.fq_r}
M = dormain sat ¥ = set oontainings

the range

FIGURE 1.23 Ay function from a set 2 to
a st M assigns a unigue element of F to
cach element 1
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EXAMPLE 1  Identifying Domain and Range

Verify the domains and ranges of these functions.

Function Domain (x) Range (y)

y= x? (—o0, oo) [0, 00)

v = l/x (—o0,0) (0, co) (—oo, 0)U (D, oo)
y =V [0, ) [0, o©)

y=V4—x (—o00,4] [0, 00)
y=VI—x’ [—1.1] [0, 1]

Solution  The formula y = x* gives a real y-value for any real number x, so the domain
is (—o0, o0). The range of y = x?is [0, o©) because the square of any real number is
nonnegative and every nonnegative number y is the square of its own square root,
y= ( y)?'ﬂ)r y=0.

The formula y = 1/x gives a real y-value for every x except x = 0. We cannot divide
any number by zero. The range of v = 1/x, the set of reciprocals of all nonzero real num-
bers, is the set of all nonzero real numbers, since y = 1/(1/y).

The formula y = Vi gives a real y-value only if x = 0. The range of y = Vr is
[0, 00 ) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — x1s [0, 00),
the set of all nonnegative numbers.

The formula y = V1 — x? gives a real y-value for every x in the closed interval
from —1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real
number. The values of 1 — x? vary from 0 to 1 on the given domain, and the square roots
of these values do the same. The range of V1 — x%is [0, 1]. [ |

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose
coordinates are the input-output pairs for f.

{(x, fix)) | x=eD}.
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F.1 permaTion. The set of all solutions of an equation in x and v is called the solu-
tion set of the equation, and the set of all points in the xv-plane whose coordinates are
members of the solution set is called the graph of the equation.

Example_Use point plotting to sketch the graph of ('y = x* )Discuss the limitationsof this
method.
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Example Sketch the graph of(y =1x).
Solution.

If (x<0), then (\x) is an imaginary number. Thus, we can only plot points for which (x > 0),
since points in the xy-plane have real coordinates. The graph obtained by point plotting.

W
x v o= [, Wi 5
i (V] {0, ) ¥ —
i i TET - "
] 2 (2, 2 =42, 1.4} . -
3 3 (3. 3y =43, 1T . . . . x
| = 14 F) 1 > 4 -

Example Sketch the graph of (y*-2y — x =0).
Solution.

In this case it is easier to express in terms of y, so we rewrite the equation as (X =y2—-2y)
Members of the solution set can be obtained from this equation by substituting arbitrary values
for y in the right side and computing the associated values of x.
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Example Sketch the graph of y=1/x.

L

x = s — 2

L, wh

(=, —2F

(%, —1F

LR

[k, CFE

— I

—i1_ 1k

€

(0, 2p

(5. 3p
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Solution. Because (1/x) is undefined at x=0, we can only plot points for which x # 0. This forces
a break, called a discontinuity, in the graph at (x = 0).
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1.4 ldentifying Functions: Mathematical Models

There are a number of important types of functions frequently encountered in calculus. We

identify and briefly summarize them here.

Linear Functions: A function of the form for constants( m and b), is called a linear function.
Figure below shows an array of lines where so these lines pass through the origin. Constant
functions result when the slope m=0 .

m = —3

v = —=3x

m = =1

[
I

-]
I
Pl [l

I+

10
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Power Functions: A function (f(x) = x*) where a is a constant, is called a power function.
There are several important cases to consider.

(@ a=n ,,a positive integer

The graphs of (f(x)=x") for n=1, 2, 3, 4,5,

FIGURE 1.36 Graphs of f(x) = x",n = 1,2, 3, 4, 5 defined for —00 < x < 00,

(bya=-1 or a=-2.

The graphs of the functions f(x) = x' = 1/x and g(x) = x> = 1/x” are shown in

Domain: x = 0
Range: w0

{a)

FIGURE 1.27 Graphs of the power functions fix) = x“ for part
(a)a = —1 and for part (b)a = —2.

11
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Led | b2

3
*E*and

L | et

(c) a = %

R

The functions f(x) = 7= V'; and g(x) = <V x

¥ v
v = Wx e
1| =Vx
1
! x ! x
0 1 0 1
Domain: ) = x << = - Domain: —20 << x << o¢
Range: 0= y-=< = Ramge: —o¢ < y = o0
v
v
¥ = x2f3
L \_
! x ! x
0 1 0 1
Domain: ) = x << = Domain: —20 < x << 2¢
Range: 0= y-=< = Range: 0= y = =c
. . . o e 1 1 3 2
FIGURE 1.28 Graphs of the power functions fix) = x* fora = =, 33" and 3 -

Polynomials: A function p is a polynomial if

p(x) = @px"™ + ap—x" ' + -+ + a1x + ag

where (n) is a nonnegative integer and the numbers (ag,a1,82, yeeee-. a, ) are real constants (called
the coefficients of the polynomial). All polynomials have domain (- oo, ) . If the leading
coefficient (a,#0) and (n > 0) then n is called the degree of the polynomial. Linear functions
with (m # 0) are polynomials of degree 1. Polynomials of degree 2, usually written as

plx) = ax” + bx + ¢ grg called quadratic functions. Likewise, cubic functions are

Y o= gyl 2 . .
polynomials plx) = ax” + bx" + ex +d of degree 3. Figure below shows the

graphs of three polynomials.

12



Mathematics Materials

Assist. Lecturer HUSHAM IDAN HUSSEIN

FIRST CLASS

a
|
-
""l [
|
[
-
}
L |

'_nJl’.-

y=8r" — 14x* —0x? + 1lx — 1

v

y=(x—2%+ -1

] )
=4 —/i 0 2 4 ! ne I\ ] 1 ] /’Ill .
- -1 0 1 2 '
| =6 \
| af i \
/ B =10
=1
| -4 -2
(a) (b) (c)
FIGURE 1.39 Graphs of three polynomial functions.
Rational Functions: A rational function is a ratio of two polynomials:
. ol Sl |
Fix) S L
where p and g are polynomials. The domain of a rational function is the set of all real x for
which (q(x) #0) For example,
2x* — 3
=) ==r5a
the function is a rational function with domain {*| * # —=4/7} |ts graph is shown below
y
¥ g1
A V= llx + 2
Al ¥ y=St8r—3 bl -1
] Irt+2 [
2F / T 4 |
I 2 : — 3 'I ol i l-
flzr Y=o 3 i Lim:_t'=§ 1_ |
1 1 e I- T:.-.- . 1 x 1 ) 1 1 —1 ..I II I\l‘. I ——1 X
-4 =2 2 4 -5 o] 5 10 — -2 0 Z 4 6
- _— = [ :_ 21
.. ]
I ni
| 2 NOT TO SCALE |
L4 - -6 L
| |
- u
(a) (b) (c)

13
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Algebraic Functions: An algebraic functionis a function constructed from polynomials using
algebraic operations (addition, subtraction, multiplication, division, and taking roots).

Exponential Functions: Functions of the form (f(x) = a*) where(a>0) the base is a positive
constant (a # 1) and are called exponential functions. All exponential functions have domain
(-0 , 0)and range (0. c0) So an exponential function never assumes the value 0.

Logarithmic Functions These are the functions fix) = log, x, where the base a # 1 is
a positive constant. They are the imverse functions of the exponential functions,

¥ v=1x1— "
y= 2P — 4 - )
] y= %[_1.: _ 12
M= 1~
p’,/
- T -
] / \\1’/ . ] )
X X - X
-10 0] 0 31
-1} 7
i -1
S
(a) (b) (c)

FIGURE 1.41 Graphs of three algebraic functions.

— -'—:'L N S - S —'L s

(a) flxh) = sin x (b)) flaxy = cos x

FIGURE 1.52 Grraphs of the sine and cosine functions.

‘g
¢

» = 1™ o= 1=
1= 12
10 1]
" =
- » = JF—= o
L
4 —— e <4
- _— e
T - » = 2= R T
— — 1 o 1 1 B B —— P
—1 —in.s5 or o= 1 . —1I —0_5 o 0= 1 .
(@) w=— 2%, w = 3 o= T by W= 2 »=— F % w»— LO—S
FIGURE 1.5%3 Grraphs of exponential firsctiomns.

14
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EXAMPLE 1 Recognizing Functions

Identify each function given here as one of the types of functions we have discussed. Keep
in mind that some functions can fall into more than one category. For example, f(x) = x?
15 both a power function and a polymomial of second degree.

1

(a) fix)=1+x —5x° (b) gi(x) = 7* (c) hiz) =

(d) wir) = sin{:f -z

2

™
)

Solution

(a) fix) =1+ x — %.‘:’5 is a polynomial of degree 5.

T

(b gix) = 7 i1s an exponential function with base 7. Notice that the vanable x is the
exponent.

(c) Aiz) = =z’ is a power function. {The variable z is the base.)

(dy wiz) = :-'.in{:f — % is a trigonometric function. [ |

Increasing Versus Decreasing Functions:

Function Where increasing Where decreasing

v =x7 0 =x = oo —oco0 < x =10

v = x2 — OO T oy e OO MNowhere

»y= l/x MNowhere —oo << x << Dand 0 =< x =< oo
_\a'=|1|"'_t_2 —o0 < x < 0 0D << x << oo

y= o 0=x < o0 Nowhere

» = x33 0 =x = oo —oo = x =0

Even Functions and Odd Functions: Symmetry

DEFINITIONS Even Function, 0dd Function

A function y = fix) is an
even function of x  if f{—x) = flx).
odd function of x if fil —x) = — filx),

for every x in the function’s domain.

15
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The names even and odd come from powers of x. If ¥ is an even power of x, as in

.

yV=xorys xt,

- - 3

15 an odd power of x, as m y =x or y = x°,
1 3

(—x) = —xand (—x) = —x

EXAMPLE 2

flx) = x
fix) = x

=
-

Recognizing Ewen

+ 1

it is an even function of x (because (—x)* = x” and (—x)* = x¥). Ify

it 15 an odd function of x (because

JJ_

and O0dd Functions

: 2> ;
Even function: { —x)* = x* for all x; symmetry about y-axis_
2

Even function: { —x) + 1 = x
w-axis (Figure 1.47a).

+ 1 for all x: symmetry about

.

FIGURE 1.47

=

2 the resulting function p» =

e

o 1 o

(al b

(a) When we add the constant term 1 o the fumnvctiomn
x2 4 1 is srill even and its graph is

still symmetric about the y-axis_ (b)) When we add the constant term 1 1o

ithe finmction » =

o the resulting funcrion » = x <4 1 is no longer oddd.

The symmetry about the origin is lost { Example 2).

fix) = x
fix)=x+ 1

Odd function: { —x) = —x for all x; symmetry about the origin.

Not odd: fl —x) = —x + 1, but —flx) = —x — 1. The two are
not equal.
Noteven: (—x) + 1 # x + 1 for all x # 0 (Figure 1.47b). |

1.5 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form new

functions.

Sums, Differences, Products, and Quotients

for xe D(f) N D(g)), we define

(f + gix)
(f — glx)
(feWx)

flx) + glx).
Flxd) — gix)h.
Six)eix).

16
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At any point of D fin .E){g]l at which g(x) # 0, we can also define the function f/g

£, . Jw) |
(E){'ﬂ T (where g(x) # 0).

Functions can also be muliiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by

(eflix) = cfix).

EXAMPLE1 Combining Functions Algebraically
The functions defined by the formulas

f)=Vx and g =V1-x,

have domains D{ f) = [0, o0o) and Dg) = (—oo, 1]. The points common to these do-
mains are the points

[0, o) M (=2, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f - g for the product function fg.

Function Formula Domain
f+g (f+x)=Vr+V1—x [0, 1] = D(f) N D(g)
f-g (f—g)x) = Vx— V1—x [0, 1

1

]
]
g—f (g— Nx)=V1-x—Vx [0, 1]
f-g (f-g)ix) = flx)g(x) = Vxl(l —x) [0, 1]

f fx)  [x

flg gl = o) ‘vfl — [0, 1) (x = 1 excluded)
glf %(r] = 'i:::; =4 1 : 2 (0, 1] (x = 0excluded)

|
] =
1

. ¥»=40f+= —
i) = Wil — x Sflx) = W
L ) gl
£ fla) + gl A oy =S8 =
mlad \&
e '\\I

I
ax Lo ] 1

1 1 1
z S 4 1
Lu] - 5 s = 5
FIGURE 1.50 Graphical addition of two FIGURE 1.51 The domain of the function Ff + g is
functions. the intersection of the domains of f and g the

interval [0, 1] on the v-axis where these domains
owverlap. This interval is also the domain of the
function F - e (Example 1).

17
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Composite Functions

Composition is another method for combining functions.

DEFINITION  Composition of Functions

If f and g are functions, the composite function f g (*f composed
defined by

(f = glx) = flelx)).

lies in the domain of f.

The domain of f = g consists of the numbers x in the domain of g for which g(x)

with g7) is

The definition says that (f0g) can be formed when the range of (g) lies in
((fog)(x)) first find g(x) and second find f(g(x)).

the domain of f. To find

fog
X— g glx) f — flglx) TN
/ )
7
/
Ie o/
f
|
EXAMPLE 3 Finding Formulas for Composites o(x)
If f(x) = Vxand g(x) = x + 1, find
(a) (f = g)x) (b) (g = fix) (c) (f = f)x) (d) (g = g)x).
Solution
Composite Domain
(a) (f < g)x) = flglx)) = Vglx)= Vx +1 [—1, oc)
(b) (g = fHx) = g(f(x)) = flx) + 1 = Vx + 1 [0, o©)
(© (f = f)x) = f(f(x)) = Vflx) = WV Vvx = x4 [0, o0)
(d) (g=glx)=glglx)) =g(x) + 1 =(x+1) +1 =x + 2 (—oo, o0)

Shifting a Graph of a Function

To shift the graph of a function (y= f(x)) straight up, add a positive constant to the right hand side of the

formula (y=f(x)).

18
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To shift the graph of a function (y= f(x)) straight down, add a negative constant to the right-hand side of

the formula (y= f(x)).

To shift the graph of (y=f(x)) to the left, add a positive constant to x.

To shift the graph of (y= f(x)) to the right, add a negative constant to x.

Shift Formulas
Vertical Shifts
v=flx)+k

Horizontal Shifits
v=flx+h)

Shifts the graph of fup kunits if k = 0
Shifts it down | k| units if & < 0

Shifts the graph of flefi h units if h = 0
Shifts it right | A |units if h < 0

FIGURE 1.54 To shift the graph
of fix) = x2 up (or down), we add
positive (or negative) constants to

the formula for f (Example 4a

and b).

EXAMPLE 4  Shifting a Graph

(a) Adding 1 to the rnight-hand side of the formula v = x’ to get y = x* + 1 shifts the
graph up | unit (Figure 1.54).

(b) Adding —2 to the right-hand side of the formula y = x” to get v = x° — 2 shifts the
graph down 2 units (Figure 1.54).

(c) Adding3toxiny = x”toget y = (x + 3)° shifts the graph 3 units to the left (Figure
1.55).

{d) Adding —2 tox in y = |x|, and then adding —1 to the result, gives y = |x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.56).

Add a positive Add a negative
constant to x. ,  constanttox. ¥
- S > L oy=be2-a
¥v=(x + 37 \ Jy =12 fy=x—2y
\ /
\ l,-"l 1
'\. ! 1 1 1 1 1 x
1 A / -4 -2 27 4 6
1 ] Pty ey x
- ] 2
FIGURE 1.55 To shift the graph of y = +* to the FIGURE 1.56 Shifting the graph of
lefi, we add a positive constant to x. To shift the ¥ = |x| 2 units to the right and 1 unit
graph to the right, we add a negative constant to x down (Example 4d).
(Example 4c). |
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1.6 Trigonometric Functions

hypotenuse

- opposile
- -1'|_ d (I
adjacent
h "
_-i:inl‘1'=£ IL'-'H.-L'I'.I'=£
hyp opp
ady hyp
oo = ——— s W = ——
hyp ady
opp ady
= _— 3 i _—
Lamn & Eld_l col & o

FIGURE 1.67 Trigonometric
ratios of an acute angle.

FIGURE 1.68 The trigonometric
functions of a general angle & are
defined in terms of x, v, and r.

The define the trigonometric functions in terms of the coordinates of the point P(x, y) where the

angle’s terminal ray intersects the circle (Figure 1.68).

; : : r
sing: snf == cosecant: cscﬂ=;

: '
cosine: cosf =% secant: sech =y

angent: tanf =< cotangent: cotf =

in I | Lm_ 1 7 _ V3
Sin—=—— S— == S — = ——
ARYS) 6 2 32
1E_ ]. 1E_1'I.-f3 E_l
cos __VF s = cos 3 = 5
o o = T _ | T _\/a
l.1n4 1 wnﬁ__‘\,ﬁ tan:“l 3

20
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FIGURE 1.69 The new and old
definitions agree for acute angles.

_ smf __
tanfl = " cot —
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The CAST rule (Figure 1.70) is useful for remembering when the basic trigonometric functions
are positive or negative

sin pos

a]].pu.t:

tan pos

C
oS pos

P

The CAST rule, remembered by the statement “All Students Take Calculus,” tells which
trigonometric functions are positive in each quadrant

TABLE 1.4 Values of sin @, cos @, and tan @ for selected values of @
Degrees =180 =135 =90 —45 30 45 6l 90 120 135 150 180 270 360
; =37 = —a X =T @ T 2m 3w Sw 3w
0 (radlams) —x 2 3 6 4 3 2 3 4 « T 2 =
_ -2 —\2 1 V2 V3 Vi V2 1
sin @ 0 3 —1 2 5 3 5 1 3 3 3 0 -1 0
P - i = g =
. ] Va2 M3 V21 _1 =v2 =V
cos 1 3 0 3 5 3 3 3 3 3 1 0 1
tand 0o i -1 % TRYE) V3 - _TW 0 0
EXAMPLE 1 Finding Trigonometric Function Values

Iftan ® = 3/2

and 0 = @ =Z /2, find the five other trigonometric functions of & .

Solution From tan # = 3/2_ we construct the right triangle of height 3 {(opposite) and
base 2 (adjacent) in Figure 1.72. The Pythagorean theorem gives the length of the hy-

potenuse, %4 + 9 = %13, From the triangle we write the values of the other five
trigonometric functions:

2
W13

zos i =

sin @ =

A

3

)

sec @ =

21

W13
2

/13

3 col B =

Lo |1
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Periodicity and Graphs of the Trigonometric Functions

DEFINITION Periodic Function

A function fix) is periodic if there is a positive number p such that
fix + p) = flx) for every value of x. The smallest such value of p is the period

of f.
cos(f + 27) = cos @ sin{® + 2w) = sin tan(@® + 27) = tan @
sec(f + 297) = sec @ cecl(f + 297) = csc @ cot{@ + 27) = cot @

L

¥ ¥y
¥ =cCosx y=slnx / /
/N /] ' -
L« | v dmfm 7w /0 1 3
- o 0 & m 2w - _i ( m & ™ )4 1 ]
| 2 2 | 2 ] 2 2

.-1
rotat
—_\ﬂ

Domain: —m < x < @ Domain: —we < x < @ Domain: x ;E-_'-E, + 3—”. .
Range: -1=v=1 Range: -1=yv=1 2 2
Period: 27 Period: 27w Range: —o0 <y <
(a) (b) Period: = (©)
v v y
y=secx Y =CSCX ¥ = cotx

\ U I\

I | | :
Bdp-m w0 ¥ 7 37 % 70| = % 37 2= % a| =m\+

‘mz m’ m‘ 2 [2‘\ 2 \[ 2
Domain: x i'—"g, = 3717 . Domain: x # 0, £#, X2m, ... Domain: x # 0, £, =2, ...
Range: y=-—landy= 1 Range: y =—landy= | Range: =00 <y <o

S LT - Period: 2w Period: =
Period: 2w

(d) (e) (f)

FIGURE 1.73  Graphs of the (a) cosine, (b) sine, (c¢) tangent, (d) secant, (e) cosecant, and (f) cotangent
functions using radian measure. The shading for each trigonometric function indicates its periodicity.

Periods of Trigonmnometric

Functions

Period 7 : tanix + ) = tan x
oi(x + ) = cotx

Period 25 simix + 29r) = sinx
cos{x + 2Z2or) = cosx
seclxy + 29) = secx
csclx + 29) = cscx
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cos’ @ + sin® @ = 1.

1 + tan® § = sec” 6.
1 + cot’# = csc’ 6.

Addition Formulas
cos(d + B)=cos4dcosB — sind sinf

sinld + B) =smAdcosB + cosdsinB

Double-Angle Formulas
cos 26 = cos” f# — sin” @
sin2f = 2smb cosf

cos @ + sin“f = 1, cos- @ — sin’ @ = cos 24.

2cos*@ = 1 + cos28

2sin*f = 1 — cos 280

Half-Angle Formulas
- 1 + cos 28
cos-f = —2

sin@ = |l = EDSEH
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The Law of Cosines

If a, b, and ¢ are sides of a triangle ABC and if @ is the angle opposite ¢, then

c¢?=a’+ b?> — 2abcosh. (6)

This equation 1s called the law of cosines.

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.75. The coordinates of A4
are (b, 0); the coordinates of B are (a cos 6, a sin 8) . The square of the distance between A4
and B 1s therefore

[ 2]

c? = (acos® — b)? + (asin@)?
= aX(cos?® + sin? @) + b2 — 2abcos @
l

=g + b2 — 2abcosB.

The law of cosines generalizes the Pythagorean theorem. If # = 7/2, thencos# = 0
and ¢* = a* + b

v

4

Bia cos 6, a sin &)

C B AR D)

FIGURE 1.75 The square of the distance
between 4 and B gives the law of cosines.
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2,1 2.2Calculating Limits Using the Limit Laws

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combina-
tions of functions whose limits we already know:.

THEOREM 1 Limit Laws
If L, M, ¢ and k are real numbers and

lim f(x) = L and lim gix) = M, then

1. Sum Rule: lE}{f{x} +elx)) =L+ M

The limit of the sum of two ﬁm{:tinnsxis ;16 sum of their limits.

2. Difference Rule: li_rzﬂf{x} —gzlx))=L-M

The limit of the difference of two fuu;tiucns is the difference of their limits.

3. Product Rule: lim(flx)-gi(x)) =L-M

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: lim(k- f(x)) = k- L
X=—=c
The limit of a constant times a function is the constant times the limit of the
function.
fix)
5. tient Rule: 11 =—, M=I0
Quotient Rule rl_ﬂ 2(x) e

The limit of a quotient of two functions is the guotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then

lim {f{x}}rfs — Lf‘lf'.f

I=+c

provided that L' is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.
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EXAMPLE1  Using the Limit Laws

Use the observations lim,—.. k = k and lim;—.. x = ¢ (Example 8 in Section 2.1) and the

properties of limits to find the following limits.

4 2
@ lim(x*+4&2-3) (b) imXFTX -1 (4 limz"u’dlxz -3
I—*C Xr——

—c x245

Solution
(a) ]i.l'l'l'[.‘{3 + 4x* - 3) = lim x* + lim 4x? — lim 3 Sum and Difference Rules
= x—c x— x—c

= E‘3 + 4(‘2 -3 Product and Multiple Rules

4. 9 lim(x* 4+ x* = 1)
. X+ x =1 =
(b) Im 3 = N 3 Quotient Rule
—=c x-+5 lim(x* + 5)
x—c

lim x* + lim x* — lim 1
XI—*c I—*c X—*¢

= - 3 - Sum and Difference Rules
lim x* + lim 5
x—*c x—=c
e e |
== - Power or Product Rule
c-+ 5
(¢) lim V4x2 =3 = V lim (4x? = 3) Power Rule with rfs = Y,
x——2 x—+—2
= "V"Ir lim 4.‘{2 = lim 3 Difference Rule
T—=—2 T—=—2
= W 4{—2}2 -3 Product and Multiple Rules
= V16 -3

=Vi3

THEOREM 2 Limits of Polynomials Can Be Found by Substitution

If P(x) = a,x" + a,_,x""' + --- + a,, then
lim P(x) = P(c) = ape” + ap—1c™" + -+ + ap.
X=*g

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and O(x) are polynomials and Q(c) # 0, then
lim P(x) _ Ple)
x—*c Q[I} Q[ﬁ‘}
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EXAMPLE 2 Limit of a Rational Function

B4 al=-3 (1P +4(=1=3 o

lim > =10
=1 x>+5 (=17 + 5 b
This result 1s similar to the second limit in Example 1 with ¢ = —1, now done in one step.

Eliminating Zero Denominators Algebraically

Identifying Common Factors It can be shown that if Q(X) is a polynomial and Q(c) =0 then
(x —¢) is a factor of Q(x). Thus, if the numerator and denominator of a rational function of x

are bothzeroat x=c¢  theyhave *—¢)  asacommon factor.

If the denominator is zero, canceling common factors in the numerator and denominator may
reduce the fraction to one whose denominator is no longer zero at c. If this happens, we can find
the limit by substitution in the simplified fraction.

EXAMPLE 3  Canceling a Common Factor

Evaluate

Solution We cannot substitute x = 1 because 1t makes the denominator zero. We test the
numerator to see if it, too, is zero at ¥ = 1. It is, so it has a factor of (x = 1) in common
with the denominator. Canceling the (x — 1)'s gives a simpler fraction with the same val-
ues as the onginal for x # 1:

24x=2_ =1x+2) x42

] _1{' k]

e =1 ifx # 1.

Using the simpler fraction, we find the limit of these values as x — 1 by substitution:

. x4+ x-=2 . x4+ 2 1+ 2
Im —————=lm —— = = 3.
=1 x* =x x=1 - 1
.
X" x—=2 ¥
! § — -
\ T = \ _x+2
-\.\ ~ \ ¥ =
3 (1. 3) '.l\! m
\ 1 L 1\I_?r
T | e
_2\ 0 1 * T—
] 1 .
(a) 2 0 1 o
\
(b}
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EXAMPLE 4  Creating and Canceling a Common Factor

Evaluate
. Vx4 100 - 10
lim ;
x—={ _1['2

Solution This is the limit we considered in Example 10 of the preceding section. We
cannot substitute x = 0, and the numerator and denominator have no obvious common
factors. We can create a common factor by multiplying both numerator and denominator
by the expression Vx? 4 100 + 10 (obtained by changing the sign after the square root).
The preliminary algebra rationalizes the numerator:

AT T LT
WVl 4 100 = 10 Vx? 4 100 = 10 Vx? 4 100 + 10
2 - 2 B o —
x x Vx? + 100 + 10
_ x>+ 100 = 100
- —_—
(V2 + 100 + 10)
.TZ ) .
= . = Common factor x~
x(Vx? + 100 + 10)
1 . .
= — . Cancel x" forx # 0
Woat 4+ 100 + 10
Therefore,
Ty
Vx4 100 =10 _ . 1
lim > = lim
———
=0 x =0 V/x* + 100 + 10
_ 1 Denominator
= —— not 0 at x = [
V02 + 100 + 10 substitute
=1 _ 0.05.
20
2.3 The Precise Definition of a Limit
EXAMPLE 1 A Linear Function
¥ Consider the function y = 2x — 1 near xo = 4. Intuitively it is clear that y is close to 7
y=2x=1 when x is close to 4, so lim, .4 (2x — 1) = 7. However, how close to xg = 4 does x have
to be so that y = 2x — 1 differs from 7 by, say, less than 2 units?
Upper bound:
9 y=29 Solution  We are asked: For what values of x is |y — 7| << 2? To find the answer we
To satisfy : | first express |y — 7| in terms of x:
this T | |
s ! ly =7l =[(2x = 1) = 7] = |2x — 8|.
: : 'f“_“é' bound: The question then becomes: what values of x satisfy the inequality |2x — 8| =< 27 To
| | r= find out, we solve the inequality:
[ * |2x — 8] < 2
0 345
— —2<2x —8 <2
Restrict
to this 6 << 2x =< 10
3 <x=<35

FIGURE 2.12 Keeping x within 1 unit

of xg = 4 will keep y within 2 units of -1 <x—=4 =1

»o = 7 (Example 1). Keeping x within 1 unit of xp = 4 will keep » within 2 units of yg = 7 (Figure 2.12) ]
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To show that the limit of f(x) as actually equals L, we must be able to show that the gap
between f(x) and L can be made less than any prescribed error, no matter how small, by holding

x close enough to X .

1
Lo+ 551

{ I

- el
ey lies

. - i breare

1
e T

For all x == g
i hwere
L= 5
S -
- - - s
o g — & = Ty &

FIGLUIRE 2_13
&5
amterwral oo

writhim thee interwal (J'_'

o shoanlad wweee e Fimee

== 1} = that keeprimng o switoam thee
— &, oaw

—+ &) wwill koo Filxk

1 & L Y
10 h

LI £

if, for every number € > 0, there exists a corresponding number 6 > 0 such that

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about xq, except possibly at xp itself. We Lae

say that the limit of f(x) as x approaches x; is the number L, and write Fix) lies
lim f(x) = L, " pre [ inhers
x—*xy

L =&

for all x,
0<|x—x| <8 = [flx) = L] < e. for all x = xgy
in here
& &
i Y
[] . . -,
A — & X Xp + &
Examples o _
FIGURE 2.14 The relation of § and € in
the definition of limit.
- el
W o= iy | W = Filxh
s L s . i
Le nan
1
- 1
Fa . r—— — — —
/I /l 1
1 1 1
| | 1
o o— ] T — 1 1
| A8 ] 4 T T T
I ,,//i I ]
el ! e adl 1 1 I ! s
o] o o o~ ) N
gy — S o g E
T e challemee: B e = o e s
Pl Boe I_,I‘_l:_'l:l- — _LI - o == % I N — _‘L'DI == & gygae T mmrrvbeerh
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¥ EXAMPLE 2  Testing the Definition
ye=3r=3
/ Show that
246
| lim (5x = 3) = 2.
| —1
S |
: I Solution Setxg = 1, f(x) = 5x — 3, and L = 2 in the definition of limit. For any given
1-e ™ € > 0, we have to find a suitable & > 0 so that if x # 1 and x is within distance & of
: i : xg = 1, that is, whenever
X
0 |_§|1+E 0<|x—]|<5,
5 5
it is true that f(x) is within distance € of L = 2, so
[fx) = 2| <€
We find & by working backward from the e-inequality:
-3
[(5x = 3) = 2|=|5x— 5| <€
NOT TO SCALE
Slx—=1] <€
FIGURE 2.15 If f(x) = 5x — 3. then |x = 1] < g/5.
0 < |x — 1| < €/5 guarantees that

|f(x) — 2| < € (Example 2) Thus, we can take § = ¢/5 (Figure 2.15). 1f 0 < |x — 1] < & = ¢/5, then

[(5x = 3) = 2|=|5x = 5| =5|x = 1| < 5(gf5) = €,

which proves that lim,_,(5x = 3) = 2.

The value of 8 = /5 1s not the only value that will make 0 < |x — 1| < § imply
|5x = 5| < €. Any smaller positive & will do as well. The definition does not ask for a
“best” positive 8, just one that will work. |

How to Find Algebraically a & for a Given f, L, x5, and € > 0
The process of finding a & = 0 such that for all x

0<|x—x <6 = |flx) — L] <€
can be accomplished in two steps.

1. Solve the ineguality | f(x) = L| < € to find an open interval (a, b) contain-
ing xp on which the inequality holds for all x # x.

2. Find a value of 8 > 0 that places the open interval (xq — &, xp + &) centered
at x; inside the interval (a, b). The inequality | f(x) — L| < e will hold for all
X # xp in this d-interval.
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EXAMPLES5  Finding Delta Algebraically
Prove that lim,—; f(x) = 4if

xz, x¥F2
f{ﬂ:{l, x=2.

Solution  Our task is to show that given € = 0 there exists a & > 0 such that for all x
0<|x—-2| <48 = |f(x) — 4] < e.

1. Solve the inequality | f(x) — 4| < € to find an open interval containing xo = 2 on
which the inequality holds for all x # x;.

Forx # xp = 2, wehave f(x) = x?, and the inequality to solve is |x? — 4| < e:
[x* —4] <€
—e<x’—-4<e¢
4—e<x’'<4+e
V4 —e<|x|< V4 +e Assumes € < 4 see below.
Vd —e<x< V4 4+ el An open interval about xp = 2
that solves the inequality
The inequality |f(x) — 4| < € holds for all x # 2 in the open interval (U4 — €,
V4 + €) (Figure 2.20).
2. Find a value of & = 0 that places the centered imterval (2 — 8,2 + &) inside the in-
terval (‘v‘(il - g, Va4 + E).
Take & to be the distance from xp = 2 to the nearer endpoint Df{ V4 - £, V4 4+ E}.
In other words, take § = min {2 - V4 - E, '\/4 + e — 2}, the minimum (the smaller)
of the two numbers 2 — V4 — eand V4 + € — 2. If § has this or any smaller positive
value, the inequality 0 < |x — 2| < & will automatically place x between V4 — € and
V4 + € to make | f(x) — 4] < €. Forallx,

0<|x=2]<é - |flx) — 4| < e.

This completes the proof.

Why was it all right to assume € << 47 Because. in finding a § such that for all
x,0 < |x = 2| < & implied |f(x) — 4| < € < 4, we found a & that would work for
any larger € as well.

Finally, notice the freedom we gained in letting & = min { 2—=V4—¢
Vd 4+ e— 2} . We did not have to spend time deciding which, if either, number was the
smaller of the two. We just let & represent the smaller and went on to finish the argument.
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Using the Definition to Prove Theorems

EXAMPLE 6  Proving the Rule for the Limit of a Sum

Given that lim,_._ f(x) = L and lim _._ g({x) = M, prove that

Solution

lim ( fix) + gix)) = L + M.

Let € = 0 be given. We want to find a positive number & such that for all x

0= |x—¢| =35 = |flx) + glx) = (L + M)| < e.

Regrouping terms, we get

| f(x) + g(x) = (L + M)| = |(flx) = L) + (g(x) = M)|

Imangle Inequality:

=) = Li+ g =ML e )

Since lim,—, f(x) = L, there exists a number §; > 0 such that for all x

0<|x—c|] <§ = |flx) = L| < g/2.

Similarly, since lim,_., g(x) = M, there exists a number &, = 0 such that for all x

D< |x —¢c| < & = lg(x) — M| < g/2.

Let & = min {5, 8;}, the smaller of §; and 8;. If0 < |x — ¢| < Sthen |x — ¢| < ;.

so | fix

This sh

) — L| < €/2,and |x — ¢| < 82,50 |gl(x) — M| < &/2. Therefore
| fix) + glx) — (L + M)| -::% + §= €.
ows that lim,—..( f(x) + g(x)) = L + M. [

2.5 Infinite Limits

. . 1
1 = 1 — = OO
Mg S = i s
. - 1
1 3 = 1 — = — oD
Jimg fC) = limg x
DEFINITIONS Infinity, Negative Infinity as Limits
1. We say that f(x) approaches infinity as x approaches x,. and write

lim flx) = oo,
x—=3g

if for every positive real number B there exists a corresponding & = 0 such
that for all x
0 << |x — x| =< & = Sfix) = B.

We say that fi(x) approaches negative infinity as x approaches x,. and write

lim fix) = —oo,
r—xg

if for every negative real number —F there exists a corresponding & = 0 such
that for all x
0 << |x — xp] << & = Filx) = —B.

32




Mathematics Materials Assist. Lecturer HUSHAM IDAN HUSSEIN FIRST CLASS

Vertical Asymptotes

1irn+% = 00 and lim — = —o0.
0

DEFINITION Vertical Asymptote
A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim f(x) =400 or  lim f(x) = +oo.

x=*g Xx—=*aq

EXAMPLE 3 Rational Functions Can Behawve in Various Ways Mear Zeros
of Their Denominators

(x — 2)° (x — 2)° x — 2
a) lim ———— = lim = lim —(——= =0
{}x—-2 x2 — 4 x—2 (x — 2)x + 2) x—2 x + 2
. x — 2 - x — 2 . 1 1
b) lim ==—= = lim = lim —(/——— =
(b) x—2 x2 — 4 x—2 (x — 2Mx + 2) x—2 X + 2 4
- x — 3 P x — 3 The values are negative
c Iim ——— = LlIim = —oo - N 5
{ } x—+ x?_ — 4 x—2* (x — 2}(.\: + 2} for x > 2, x mear 2.
- x — 3 . x — 3 The values are positive
d Im ———— = lim = oo : - S
{ } x—2— x2 — 4 x—=2— (x — 2Wx + 2) for x == 2, x mear X.
; x — 3 . x — 3 ;
w lim ——— = lim does not exist. See parts (c) and (d).
{}x—-2x2—4 a—2 (x — 2Mx + 2) parts ey aned
N — N —(x — 2) ) _
(f) lim 2713= lim — s = lim 7lq= — oo
x—2 (x — 2) x—2 (x — 2) x—2 (x — 2)°
In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f),
where cancellation still leaves a zero in the denominator. |
EXAMPLE 4% Using the Definition of Infinite Limits
Prowe that lirn L., = o>
e —=F -
Solutiom Giwven & == 0O, we want to find & == O such that
0O = | — O] = & implies ﬁ}s.
™o
- if and only if x& = €L
IZ =
o, equivalently,
1
== = N
=%
Thus., choosing & = IIV/E (or any smaller positive number)., we see that
. - 1 1
- & 1 — = 5 = 7.
(= implies o= &2
Therefore. by definition,
liswry % = o=

x—==dd A
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EXAMPLE 5 Looking for Asymptotes

Find the horizontal and vertical asymptotes of the curve

po=xF3
- x + 2
Solution We are interested in the behavior as x — o0 and as x — —2, where the de-

nominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial
with a remainder, by dividing (x + 2) into (x + 3).

1
x+2}x+3

x + 2
1
This result enables us to rewrite y:
1
v=1 — Y-
- x + 2
We now see that the curve in question is the graph of v = 1/x shifted 1 unit up and 2 units
left (Figure 2.43). The asymptotes, instead of being the coordinate axes, are now the lines
y=landx = —2. |
EXAMPLE 7 Curves with Infinitely Many Asymptotes
The curves
_ _ 1 _ _ sinx
¥ = SecX = osx and ¥ = tanx = o5
both have wvertical asymptotes at odd-integer multiples of 7/2 , where cos x = 0 (Figure 2.45).
¥ N = Sec x -:" ¥ = tan x
] —
1 1 X X
L0 o 3T 3T T ¥ LU w o
-3 ] 3 3 e 3 T
FIGURE 2.45 The graphs of sec x and tan x have infinitely many wvertical
asymptotes (Example 7).
The graphs of
1 COSs X
VY = CcsSCcx = — and Vv = cotx = —
- sin x - sin x
have wvertical asymptotes at integer multiples of @, where sin x = 0 (Figure 2.46).
. ¥V = CSC X “': ¥ = Ccot.x
1~ 1
1 1 1 x 1 E's
- _m 0 T 4T 3w 2 -y T 0 W i
z -2 Z z — 2
FIGURE 2.46 The graphs of csc x and cot x ( Example T). |
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2.6 Continuity

Any function whose graph can be sketched over its domain in one continuous motion without
lifting the pencil is an example of a continuous function.

DEFINITION Continuous at a Point
Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = f(e).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

lim,_ fix) = fla) or lir?_ fix) = f(b), respectively.

EXAMPLE 1 Investigating Continuity

Find the points at which the function f in Figure 2.50 is continuous and the points at which
f is discontinuous.

2 - ¥ = flx)
/\ Solution  The function f is continuous at every point in its domain [0, 4] except at
! *—d x = l,x = 2,and x = 4. At these points, there are breaks in the graph. Note the relation-
- ship between the limit of f and the value of f at each point of the function’s domain.
1 1 1 -
0] T 2 3 1 *
Points at which f is continuous:
FIGURE 2.50 The function is continuous .
on [0, 4] exceptatx = 1, x = 2, and Atx =0, _\-li,mu* Sflx) = f(0).
x = 4 (Example 1). Atx = 3, ]im} f(-‘() = f(:”)
x—
AtD < ¢c <=4, ¢ # 1,2, lim fix) = flc).
xX—=c

Points at which f is discontinuous:

Atx = 1, lim f(x) does not exist.
Continuity Two-sided o x—=1
fi the righi rinuity Continuity — - —
rom the right c_?ililf:} e crums e Tost Atx = 2, \‘]Lrpz Sflx) I.but 1 # f(2).
; I ! Atx = 4, lim fix) = 1,butl # f(4).
| | »=fix) | x—s4~
: : : Ate < 0,c = 4, these points are not in the domain of f. u
c b

x

a

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit) (Figure 2.51).

FIGURE 2.51 Continuity at points a, b,
and c.

Continuity Test
A function fix) is continuous at x = ¢ if and only if it meets the following three

conditions.

1. f(c) exists (¢ lies in the domain of )

2. lim,—. f(x) exists (f has a limit as x — ¢)

3. lim,—. fix) = flc) (the limit equals the function wvalue)
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Continuous Functions

THEOREM 9 Properties of Continuous Functions
If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Swums: f + =

2. Differences: f— =

3. Products: f-e

4. Constant multiples: k- f, for any number k&

5. Quotients: Ffe provided g(c) = 0

6. Powers: % provided it is defined on an open interwval

containing <, where r and s are integers

Most of the results in Theorem 9 are easily proved from the limit rules in Theorem 1,
Section 2.2. For instance, to prove the sum property we have

\}i—rp.}{f + gix) = ,li_rf;{f{ﬂ + gix))

= lim fl:_r] + lim g(x}, Sum Rule, Theorem 1
x—c x—e

= fl:(_} -+ g((_) Continuity of f, g at «

= (f + gic).

This shows that f + g is continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g = f is
continuous at c.

gef

/’Jd— Continuous at ¢ \
e

.f-"'"_E'untinuéﬁ.{'“---m Continuous x\
- ate o at fic) “‘Hu'
c fie) gl fileh)

EXAMPLE 8 Applying Theorems 9 and 10

Show that the following functions are continuous everywhere on their respective domains.

243
a) v = Wx2 — 2x — 5 by v = ———
{ } ¥ a0 ( }J l+.¥4
(c) » = |g| @y v = |w|
- x* — 2 - x2 + 2
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Solution

(a) The square root function is continuous on [0, o< ) because it is a rational power of the
continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then
the composite of the polynomial f(x) = x? — 2x — 5 with the square root function
() = Vr.

(b) The numerator is a rational power of the identity function:; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

(c¢) The quotient (x — 2),.-"(1:2 — 2) is continuous for all x = :l:\.-f'E_, and the function is
the composition of this quotient with the continuous absolute value function (Exam-
ple 7).

(d) Because the sine function is everywhere-continuous (Exercise 62). the numerator
term x sin x is the product of continuous functions, and the denominator term x* + 2
is an everywhere-positive polynomial. The given function is the composite of a guo-
tient of continuous functions with the continuous absolute wvalue function (Figure
2.58). -

3

—2ar _—T o T 2T

FIGURE 2.58 The graph suggests that
v = |{x sinx)/(x? + 2)| is continuous
(Example Sd).

Continuous Extension to a Point

The function v = (sin x)/x is continuous at every point except x = 0

y = (sinx)/x is different from y = 1/x

sinx .o
I —
D 1. x = O.
The function F({x) is continuous at *x = 0 because
. sin x
Lim, 555 = £
v ¥
L A
0,1 0,1
(0. 1) ©.0 gy

1
a5
=]
SE]n
I
lak
=]
SlE]n

(a) (b)

FIGURE 2.59 The graph (a) of f(x) = (sinx)/x for —7/2 = x = /2 does not include
the point (0, 1) because the function 1s not defined at x = 0. (b) We can remove the
discontinuity from the graph by defining the new function F{x) with F{0) = 1 and

Fix) = f(x) everywhere else. Note that F(0) = 1!I—r:}r filx).
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EXAMPLE 9 A Continuous Extension

Show that

>
x° +x — 6
flx) = ——F
x< — 4
has a continuous extension to x = 2, and find that extension.

Solution Although f(2) is not defined, if x # 2 we have

f(t:':xg—l—_r—6=|:-‘l'_2]{x+3}=x—l—3
- x — 4 (x — 2Mx + 2) x + 27
The new function
x + 3
FOY =552
is equal to fix) for x # 2, but is continuous at x = 2 _ having there the value of 5/4. Thus
F is the continuous extension of f to x = 2, and
. 2 4+ o — 6 . 5
1 X T X B 3 = =.
1]_";['5 x2 — 4 _'(1—];[3! f{t} <4

The graph of f is shown in Figure 2.60. The continuous extension / has the same graph
except with no hole at (2, 5/4). Effectively, F is the function f with its point of discontinu-

ity at x = 2 remowved. |
-
2 -
L =" 4 o — G
- s — A
11—
|
1 1 AL 1 1 o
—1 (5] 1 > = Y
L=
>
T e =
2 7T x4 2
=]
1 1 | 1 1 o
—1 o 1 = = <4

(= ]

FIGURE 2.60 (a)y The graph of
Six)y and (b)) thve graph of 1ts
CONTIMULGOES extension )k
({Example 9.
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2.7Tangents and Derivatives

For circles, tangency is straightforward. A line Lis tangent to a circle at a point P if L passes
through P perpendicular to the radius at P. it means one of the following:

1. L passes through P perpendicular to the line from P to the center of C. S
AP

2. L passes through only one point of C, namely P. / 7R L

3. L passes through P and lies on one side of C only. '\ ] |

N

Ex.

Find the slope of the parabola y = x? at the point P(2, 4). Write an equation for the tan-
zent to the parabola at this point.

We begin with a secant line through P(2, 4) and 02 +h (2 +h)) nearby. We then write

an expression for the slope of the secant PQ and investigate what happens to the slope as Q
approaches P along the curve:

Ay 2+h)?*=2 24+ 4h+4-4

3 - h h

_h*+ 4k
h

Secant slope =

=h + 4,

If h> 0, then Q lies above and to the right of P.
If h< Othen Qlies to the left of P(not shown).

In either case, as Q approaches P along the curve, h approaches zero and the secant slope
approaches 4:

2 > 2
y=x4 ., Secant slope is @+ R —4
- h

Q2 + ko2 + /

-
~~
————." Tangent slope = 4
-
-

\ Iy
; .

o < 2 2+ h

=h + 4
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Finding a Tangent to the Graph of a Function

DEFINITIONS Slope, Tangent Line
The slope of the curve y = f{x) at the point P{xg. f(xp)) is the number

(xg + h) — flxg)
m o= ;}im S T J(xo (provided the limit exists).
—=1)

The tangent line to the curve at P is the line through P with this slope.

v = filx)

Qg + h. fleg + Ry

(1] X Lo

FIGURE 2.67 The slope of the tangent
flxo + A1) — flxg)

line at P is lim
h—=0 I

Finding the Tangent to the Curve v = fix) at (xg, Vo)
1. Calculate fixg) and flxg + R).
2. Calculate the slope

. flxo + A) — flxa)

lim B
fr—0 f

m =

3. If the limit exists, find the tangent line as

v = yp + mi{x — xp).
EXAMPLE
Show that the line v = mx + b isits own tangent at any point (g, #ixg + &) .
Solution We let f{x) = mx + £ and organize the work into three steps.

1. Find f(xq) and flxg + R).
flxp) = mxo + b
Mxg + h) = milxg + h) + b = pmaxg + mh + &

2. Find the slope }Ilin‘:.[j'{_tg + ) — flxa))ih.

. flxg + R) — flaxg) . (mxg + mh + b)) — (mxg + B)
lim = lim
o h f — h
. mh
= lim = m
h—0

3. Find the tangent line using the point-slope eqguation. The tangent line at the point
(xg. mxg + bH)is

v = (mxg + b)) + mix — xq)
¥ = mxg + b + mx — mxg
¥y = mx + b. |
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Rates of Change: Derivative at a Point

Flag + k) — flxg)
fi

A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

fle) = 166%
For the firet 2 sec: Ay _ 16(2)7 — 16(0) _ ., fi

(a) or the first 2 sec: Ar 5 — 0 = Sec
_— . . Ay 16(2) — 16(1)° — 45t
(k) rom sec 1 to sec 2: Ve 5 — 1 = Sec
Solution We let f(¢) = 16¢7. The average speed of the rock over the interval between
f= landr = 1 + /& seconds was

(1 + k) — f(1) 16(1 + 4)* — 16(1)*  16(h* + 2h

! A _ 16t ! o e L= 16 + 2).

b i i

The rock’s speed at the instanty = 1 was

J_:I!irr:] l6ih + 2) = 16(0 + 2) = 32 fi/sec.

Ay 16l + ) = 161
“Ar h

Average speed

1. Theslopeof y = flx)atx = xy

2. The slope of the tangent to the curve v = fix)atx = xp
3. The rate of change of f(x) with respect to xatx = x;

4. The derivative of f at x = xy

xp + ) — flx
5. The limit of the difference quotient, J!im] fxo I: flxo)
—
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DIFFERENTIATION

3.1 The Derivative as a Function

Derivatives are used to calculate velocity and acceleration, to estimate the rate of spread of a
disease, to set levels of production so as to maximize efficiency, to find the best dimensions of a
cylindrical can, to find the age of a prehistoric artifact, and for many other applications.

DEFINITION

The derivative of the function f(x) with respect to the wariable x is the function
f " whose value at x is

Derivatiwve Function

) Slx + i) — Filx)
limn .
e A

Frix) =

provided the limit exists.

Alternative Formula for the Derivative

flz) — flx)

fiix) = _I'_';“l z — X

¥ o= fix)

Secant slope is
Jizy = fix)

L=X

Sizy = fix)y

Six) = lim
|

Derivative of fat xis
Six 4 h) = fix)

,.,“__-l__

H

Calculating Derivatives from the Definition

Fr
e

Jix)

EXAMPLE 1 Applying the Definition

X
x— 1"

Differentiate fix) =

x
x — 1

Solution Here we have fix) =
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(x -+ #)
x + ) — 1° 5
v e ) = filx)
S0 = im

flx + H) = o

x 4+ h X

x4+ h — 1 x— 1
Fi
] x4+ h)x — 1) —x(x + 8 — 1) a e ad
kW (x + h — 1)(x — 1) BT el

m L —
h—=nf x4+ h — 1)x — 1)

= lim - -1 ==
h—0l(x + o — 1)x — 1) (v — 1)

EXAMPLE 2 Derivative of the Square Root Function

(a) Find the derivative of y = vy forx = 0.
(b) Find the tangent line to the curve y = Vxatx = 4.

S5olution

[a) We use the equivalent form to calculate f':

v o flz) = flx)
flx)y=1lm—F—F—

Ty

e VzZ- WX y
= Im ——=—

- o

. vz - Vx =
lim - — R E— o ":'1"'
== (V= Vi) (VE 4 VE) RN
: 1 _ 1 L '

Iim — == = .
—r Wz o4+ VWxoo 2Wx

[
L

(b) The slope of the curve at x = 4 is

fay=—-=1

AV B

The tangent is the line through the point (4, 2) with slope 1/4 (Figure 3.2):

U I
_1-—2+4[x 4)

r=—=x+ 1.
Y=3

We consider the derivative of ¥ = Vxwhen x = 0 in Example 6.
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Differentiable on an Interval; One-Sided Derivatives

Slope =
fla + h) — fla) pur® h
im Right-hand derivative at a Slope = ~—
h—0* h tim fla 4 k) = fla)
. fth+ k) — fib) ot .
J!zllna_ h Left-hand derivative at b

b4 b

EXAMPLE 5 v = |x| Is Mot Differentiable at the Origin

Show that the function v = | x| is differentiable on (—~<, 0) and (0, ©<) but has no deriva-
tive at x = 0.

Solution To the right of the origin,

o o o . _ A . )
4£¥(|'Y|} T dx ) = dx (1 -x}=1. Pt Sl
To the left,
o _ _ . _
Tl = o l—x) = - (—1-x) = —1 [x] = —x
. L i [0 + & — O] i | # ]
Right-hand derivative of | x| at zero = lim —————— = lim_ ——
B0+ A h—0
— 1im . . .
= ;,I_'!-H+h |#] = & when i = 0.
= lim.1 =1
h—0+
|+ b — O] | #2 |
Left-hand derivative of |x| at zero = lim ————— = lim_ ——
] hr h—0" 1
= ,s;l_ifg-_— |i] = — when
lim — 1 = —1.
B0

THEOREM 1 Differentiability Implies Continuity
If f has a derivative at x = ¢, then f is continuous at x = c¢.

THEOREM 2

If @ and b are any two points in an interval on which f is differentiable, then f'
takes on every value between f'(a) and f'(h).
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3.2 Differentiation Rules

Laws of derivatives:

the derivative of a constant is zero.

(X” )‘ — HX”_I

(cF(x)) = ef(x)

(F(072(x) = () + g(x)

(£(.2(0) = £(0.2(0" + £(x) g(x)

(£ T = n(£(x)"™ £(x)

[M] _ 80 (0 ~ F(De(x)
g(x) g(x)°

S

EXAMPLE 1
If f has the constant value f(x) = &, then

dr _

o _
e~ dx (8) = 0.

Similarly,

I Tl o A3 =
e ( 2) 0] and e (\, 3) 0. -
Proof of Rule 1 We apply the definition of derivative to filx) = . the function whose
outputs have the constant value o ( Figure 3 _8). At every value of x, we find that
Sl + #f)d — Ffilx) o —
e = M = — = 1li 0 = . -
Il = Jm, it 250 A Pl

EXAMPLE 2 Interpreting Rule 2

I X x? i3 xt

i 1 2x 3x? 4 e [

First Proof of Rule 2 The formula

=z — x24T

can be verified by multiplving out the right-hand side. Then from the alternative form for
the definition of the derivative,

, i j[:} —_ j[f} i =
fiix) = Ilmﬁ= lim ——

e — —y =

= lim(z""" + =" ¢ oo 2" 4 )

Z—*rIx

= mx"!
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EXAMPLE 3
(a) The derivative formula

- PP —
e (3x°) = 3+ 2x fx

says that if we rescale the graph of y = x? by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case
The derivative of the negative of a differentiable function « is the negative of the func-

tion’s derivative. Rule 3 with ¢ = —1 gives
d . A o= Ly = _du
dx (—u) = alx (—1-u) . el () alx -
Proof of Rule 3
i = li L‘i.rl'.:_‘( + -"T} _ L‘ia'l'.:_‘(]l Derivative de finition
o cH = -.;zl_r:-::l it with flx) = cwlx)
— ol wix + A1) — wix)
= Lhinﬂ & Lt property
= L‘dl i it tiabl ||
{.{¥ 1S dirrerenisa c.

EXAMPLE 4 Derivative of a Sum

y=x"+ 12

dy a4 d

dr dx (%) + dx (12x)
4x 4+ 12

Proof of Rule &4 We apply the definition of derivative to flx) = ulx) + wix):

" [l + h) + wix + A)] — [uix) + v(x])]
im

d . )
L fute) + vlx)]

h—=1 h
) wlx + k) —uwlx)  wix+ H) — vix)
= lm +
h—=il i h
x4+ ) — wl x4 ) — wi
- i XN W) | A ) e
h— h h— h i idx
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EXAMPLE 7 Using the Product Rule
Find the derivative of

|
vV
_}-‘=%(xz+l)_ ~

X

Solution We apply the Product Rule with u = 1/xand v = x* + (1/x):

o Fui ot
d |1 1 1 1 1 1 — ) = v— 4+ v— and
e O R ) R ) ) B A

2 1 1

| = | = =—hbv
dr \x ) Z

= — _!f_3 -1 — _‘{'_3 E-';.:'_ll ple 3, :‘\..':.'II:'II 2.7.
2
= ] —_ u
x?
Proof of Rule 5
o o ulx 4+ welx + i) — wxe(x)
T{uu} = lim
olx h—=0 I

To change this fraction into an equivalent one that contains difference quotients for the de-
rivatives of & and v, we subtract and add w({x + #)uvix) in the numerator:

d . oulx 4+ hulx + h) — wilx + Buix) + wlx + Buix) — wix)vix)
T{“U]' = lim .
ax h—=1
— lim [u{x PG B O N7 ) B u(_ﬂ]
h—=1) h I
= _ﬂ!i—rrnﬂu{x + h) - ﬁ!i_r‘nﬂ vix + Pr; — wix) + w(x) _ﬁ!@ﬂ wix + hji - ul{x}l_

As happroaches zero, uix + #) approaches u{x)because u, being differentiable at x, is con-
tinuwous at x. The two fractions approach the values of dv/dyx at x and du/dx at x. In short,

d — ,, du du
u"x(uuj o EIII{.l".‘( +U{I¥' -
Proof of Rule 7 The proof uses the Quotient Rule. If » is a negative integer, then
EXAMPLE 11 i = —m, where m is a positive infeger. Hence, x" = x™ = 1/x", and
d d |1
1 (1\_d, - S5 | ') = —(—)
(ﬂ} {;—‘((?) = {{F(Y l) = (—I).‘( 1 _X—z dy dr \x"
1(4)_,d, - 4_ 12 Ay
o) {‘,—Y(—Jj =4 = gyt = - ) - | -
X ) X = ( m)z (uotient Rule with = 1and v = 2"
X
0= d
= A,J!m atncem > =
— _m_‘,—m—l
=" Since =m = 1 [
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EXAMPLE 10  Using the Quotient Rule
Find the derivative of

Solution
We apply the Quotient Rule withu = * — landv = * + 1:

dy (154 128 = (17 = 1)-2¢ J () vldufdl) = uldvfde)
dr (2 + 1) II-.-'_'.-_ :
_ 20 + 2 — 20 + 2
(* + 1)
_ 4r
e "

Proof of Rule &

ulx + k) ulx)
d (u) _ovix+ ) wlx)
— | =] = lm

de \V B—sil h

vixiulx + h) — wlx)vlx + k)
= hulx 4+ hwlx)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of « and v, we subtract and add v{x)u(x) in the numerator. We then get

d (E) i vixdulx + h) — vivduly) + vivulx) — wlx)wlx + i)

de \v )~ ,s,ﬂ}] holx + hwlx)
ol 4+ k) — uix) o wvilx + b)) — vlx)
vix) m — ulx) I
= lim
h—) vix + hvix)
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Second- and Higher-Order Derivatives

The function is called the second derivative of f because it is the derivative of the first
derivative.

=L L (BB = b
ffx) = e \d) T dx =y" = Df)lx) = D~ flx).

If y = x°, then ' = 6x° and we have

'“r.|".l _ “I' f 5 _ 4
Y TN T ik |:_f7.1 \,l = 30x".

Thus D?(x®) = 30x*.

EXAMPLE 14  Finding Higher Derivatives

The first four derivatives of y = x* — 3x% + 2 are

First derivative: o= 3xt — 6x
Second derivative: " = 6x — 6
L

Third derivative: =6

Fourth derivative: " = 0.

Derivative of trigonometric functions:

1. (sinu) =cosu.du/dx

2. (cosu) =—sinu.du/dx
3. (tanu) =secu’.du/dx
4. (cotu) =—cscu’.du/ dx
5. (secu) =secu.tanu.du/ dx
6. (cscu) =—cscu.cotu.du/ dx
EXAMPLE1  Derivatives Involving the Sine
(a) v= x? — sinx:
v d.
= 2x — El:_sm.f_]

= 2x — COsX.
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EXAMPLE 2 Derivatives Involving the Cosine
(a) v = 5x + cosx:

dy d d ¢
de — dy (5x) + dx l:-cm .‘f)

= 5 — sin.x

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

sin x CO5X
fanx = ¥ oty = — ¥ SgCXx = " and CRCXY = —
CoOs X sinx Cosx sin x
EXAMPLE 5
Find d{tan x)/dx.
Solution
cos Yi['qin ?(']l — sinx i['cnq ‘{'j:|
i['tan ‘(::l _ SIn X _ T M " - Craotient Rl
{I_Y \, - {I_‘t COS T wsl-—r NLE L iRt oL
__ CcOosxcosx — sinx [—sinx)
cos® x
_ cos® x + sin®x
cos x
1 2
= = s E -
cos® x seen
EXAMPLE 7 Finding a Trigonometric Limit
i V2t secx V24 secd _ V24T _ V3 3
.1-ﬂ-1':| cosis — tanx)  cos(m — tan®)  cos(m — 0) = —1 —
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3.5 The Chain Rule and Parametric Equations

The Chain Rule is one of the most important and widely used rules of differentiation. This

section describes the rule and how to use it.

Derivative of a Composite Function

EXAMPLE 1

Relating Derivatives

3

The function y» = S-x =

How are the derivatives of these functions related?

= %[3.‘(} is the composite of the functions y = 2I’—e.r and w = 3x.

Solution We hawve
dv 3 dv 1 da du
e~ 2 du 2 an wdx
Si 215w h
._II'ICC2—2 , W 5o that
dy AV g
dx ~ du dx-
THEOREM 3 The Chain Rule
If f(e) is differentiable at the point v = gix) and g(x) is differentiable at x, then
the composite function (f = glix) = flg(x)) is differentiable at x, and
(f=g)ix)= fFlgxl)-g'(x).
In Leibniz’s notation, if v = flu)and v« = g(x), then
ﬂ _ v |
dx  du dx’
where dy/du is evaluated at u glx).

Proof of the Chain Rule:

Let Aw be the change in & corresponding to a change of Ax in x, that is

Then the corresponding change in y is

It would be tempiing to write

and take the limitas Ax — 0:

ey
ol

lim 2
= lim —
Ax—s0 M
lim AV Au
= m — -
Av—0 S Ax
. ¥ .
= lhm = lum
Av—0 A Av—0 Ax
. 14 . Mir
= lium = lhim
An— 0 Air Axv—0 Ax
Ay du
alee el

A = glx + Ax) — gix)

Ay = flee + Aw) — flae).

Ay AV Agy
Mo M Ax

(Mote that Aee —= 0 as

since & 1§ continuous.)
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“QOutside-Inside” Rule

It sometimes helps to think about the Chain Rule this way: If y = f{g(x)), then

rh )
(hf - ,uJI LI-.{[I’ *E [T]

EXAMPLE 4  Differentiating from the Outside In

Differentiate sin [_:c2 + x) with respect to x.
Solution

%sinfxz +x)=cos(x? +x)(2x + 1)

A ——— ————— i —— — - e ———— ———
imnside mside dervative of
left alone the nside

The Chain Rule with Powers of a Function

d a1 dit di .
_“ = nu 3 = — Il | = Mt
|["{ {.!.r i '

EXAMPLE 6  Applying the Power Chain Rule

(a) %[Sﬂ — x4 =75 — xH)0 (Ei (5¢% —x v Poveer Chain Rule with

— i 1, —

2T — X LR

= 7(5x° — xH8(5-3x7 — 4Y)
= 7(5¢° — 20152 — 447)

(b) {h(_' ) Fz:—z)

= —1(3x — 2) 'E[EI - 2) J’:lfq{'f'iﬂl: {li E‘illl'.
= —1(3x — 2)7%(3)

3

(3 —2)?
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Implicitly Defined Functions

ind dvide if 12 = 1. v = /e and = ST
EXAMPLE 1 Differentiating Implicitly Finddy/deif y° = x. yy = Vxand y» = =V

i)
yo=x
he Chain Rule gives — [ v*] =
dy ] - _
y— =

{'l!r.'k' ._ .||'_IJ-_:II 1 —:. —_

dy |

de 2y
dyy 1 1 dyz |
- =5 = — and ===
dx 2y ¢ clx 244

N

yoy=a
1 1
Slpe = — = - —
P T e _—
e vy = W
[Px. V)
|
| v
0 |
e | _
Q20x, —Vx)
/ — V2= —Vx
1 L
Slope = T o ~—~
= ™ x

Implicit Differentiation

entiable function of x.

3. Solve for dyv/dx.

1. Differentiate both sides of the equation with respect to x, treating y

2. Collect the terms with dy/dx on one side of the equation.

as a differ-

Lenses, Tangents, and Normal Lines

Tangent

.

Light ray

Curve of lens

i surface
MNormal line

53




Mathematics Materials Assist. Lecturer HUSHAM IDAN HUSSEIN FIRST CLASS

EXAMPLE 4 Tangent and NMormal to the Folium of Descartes

Show that the point (2. 4) lies on the curve x* + »* — 9xp = 0. Then find the tangent and
normal to the curve there (Figure 3.4 1).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation
given for the curve: 23 4+ 4% — N2N4) =8 + 64 — T2 = 0.
To find the slope of the curve at (2, 4), we first use implicit differentiation to find a

formula for o/ dx:

xF + P — G =0
ol foa ol o3y R Differentiate both sides
ax () + 2 07) = g5 (9) = - (0) with respect to x.
dy v ox Treat xy as a product and »
3x% + 3.‘JEE - 9(-‘7 v + J’E =40 as a function of x.
'y
(3y* —9x) -+ 3x — 9y =0
2 _ v _ _ 2
3w 3x) el at 3x
dy 3y — x°
e = = e Solve for dyv/dx.
y- — Ix
We then evaluate the derivative at (x, v) = (2, 4):
v 3y — &7 34 — 22 8 a4
vl ¥ — 3xlea 47— 3(2) 10 =h

The tangent at (2, 4) is the line through (2, 4) with slope 4/5:

i-2)

2
o4, 12
» = 5 =

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line
through (2, 4) with slope —5/4:

s
y=4— F(x —2)

5 13
P= — Ty 4+ —. m
3 I 5
The gquadratic formula enables wus to solve a second-degree equation lhke
¥? — 2xy + 3xF = 0 fory interms of x. There is a formula for the three roots of a cubic
equation that is like the gquadratic formula but much more complicated. If this formula is
used to solve the equation x* + ¥* = 9xy for ¥ in terms of x, then three functions deter-

mined by the equation are

I|I B II| 5 III B III =
i Y e N i R iV bl ko
and
f ——— f =
f [ i 3 [
3 X X i X X
| ’ [E- = 274?
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Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.
EXAMPLE 5 Finding a Second Derivative Implicitly
Find d*y/dx* if 2x* — 3y* = 8.

Solution To start, we differentiate both sides of the egquation with respect to x in order to
find ' = dy/fdx.

L (a0 - 22) - L
Bl — 6_1.'_1." =0 Treat v as a function of x.
w2 — " =0
>

We now apply the Quotient Rule to find »".

2 y — T 2
o= o fx= — 2x) ¥ o 2Zx _ x” ey
- e NV 2 iy p2 -
Finally, we substitute ¥" = x%/v to express 1" in terms of x and y.
2x x2 x2 2x xt
yr=Sr—==\5 ) =5 — =3 when y = 0 |
- 3 NERN 3 3 .

Rational Powers of Differentiable Functions

THEOREM 4% Power Rule for Rational Powers
If pfer is a rational number, then aPfa s differentiable at every interior point of the
domain of "7~ and

—(‘:r B oL - ‘;TJI[P.-"?'J*' ;
Proof of Theorem 4 Let p and g be integers with ¢ = 0 and suppose that y = “af =
X% Then
»i = xF.

Since p and g are integers (for which we already have the Power Rule), and assuming that
v is a differentiable function of x, we can differentiate both sides of the equation with re-
spect to x and get

If » # 0, we can divide both sides of the equation by g»9" " to solve for dyv/dx, obtaining

v poct !

ol ql""_'

x P L= lp—pfa) A law of exponents

ST TR BT T

P I‘
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EXAMPLE 6 Using the Rational Power Rule

d iy L e 2
(a) - (x172) = 5 =57 forx = 0
(l!r 2;““—" _ 2 _|ll|r:|‘ .
(b) E{.‘c )= T forx = 0
(c) %I[x—”l;l = —%x—?ﬁ’ forx # 0

4.3 Monotonic Functions and The First Derivative Test (Increasing

Functions and Decreasing Functions).

In sketching the graph of a differentiable function it is useful to know where it increases (rises

from left to right) and where it decreases (falls from left to right) over an interval.

DEFINITIONS Increasing, Decreasing Function
Let f be a function defined on an interval f and let x; and x> be any two points in J.

1. If flxg) << filaz) whenever xy << x>, then f is said to be increasing on 7.
2. If fixz) == fiixy) whenever x; << x3., then f is said to be decreasing on J.

A function that is increasing or decreasing on f is called monotonic on 7.

COROLLARY 3 First Derivative Test for Monotonic Functions
Suppose that f is continuous on [«, £] and differentiable on (a, 5).
If f"{x) = 0 at each point x ={a, &), then f is increasing on [a, &].
If f"{ix) == 0 ateach point x = (a, &), then f is decreasing on [a. &].

EXAMPLE 1 Using the First Derivative Test for Monotonic Functions

Find the critical points of f(x) = X — 12x — 5 and identify the intervals on which f 1s

increasing and decreasing.

Solution
fix) =3x2 =12 = 3(x* — 4)
=3x+ 2)x —2)

szeroatxy = —2andx = 2. The
(—oo, =2),(—2,2),and (2, 00)
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Intervals —00 < x < =12 —2<x<12 2<xy<
J" Evaluated fi(=3)=15 J1o)y=-12 fl(3) =15
Sign of f' + = +
Behavior of f Increasing decreasing ncreasing
Y y=x=12x — 5
20 : JIII
(=2, 11}
10 -
1 rf{ 1 1 B 1 1 1 / X
-4 J3 -2 -1 1’)\_ 1z 3!-’4
/ 140 \—\ /
—_ Y f
lll B \\ .-"‘I
/ =20 - :;_\:,2’]}

4.4 Concavity and Curve Sketching

DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval [ if f' is increasing on [
(b) concave down on an open interval [if /' is decreasing on /.

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval /.

1. If f" = Oon [, the graph of f over /is concave up.
2. If f" < Oon [ the graph of f over [ is concave down.
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EXAMPLE 1 Applying the Concavity Test

(a) The curve y = x° (Figure 4.25) is concave down on (—oo, 0) where y" = 6x < 0
and concave up on (0, oo) where v" = 6x = 0.

(b) The curve y = x? (Figure 4.26) is concave up on { —oo, oo ) because its second deriv-
ative v" = 2 is always positive. m

EXAMPLE 2 Determining Concavity

Determine the concavity of » = 3 + sinxon [0, 27].
Solution  The graph of » = 3 + sinx is concave down on (0, o), where »" = —sinxis
negative. It is concave up on{, 27 ), wherey” = —sinx is positive (Figure 4.27). ]

¥=3 + sinx

0 - I~

FIGURE 4.26 Th h of fix) = x? is . "
_ he graph of flx) = x7is FIGURE 4.27 Using the graph of 3" to
concave up on every interval { Example

by, determine the concavity of v ( Example 2).

EXAMPLE 5 Studwying Motion Along a Line
A particle is mowving along a horizontal line with position function
sy = 2 — 1482 + 22¢ — 5, r = 0.

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is
) = () = 6:2 — 28Br + 22 = 2r — 13(3¢r — 113,
and the acceleration is
alt) = w'(t) = " () = 12¢ — 28 = 4(3¢r — 7).

When the function s(r) is increasing, the particle is moving tw the right when s(r) is de-
creasing, the particle is moving to the lefi.

M™Notice that the first derivative (v = &")is zero when ¢ = land¢ = 11/3.
Intervals 0 = ¢ <<1 I = ¢ =< 11/3 11/3 << &
Sign of v» = 57 + — -+
Behavior of & increasing decreasing increasing
Particle mo tion right left right

The particle is moving to the right in the time intervals [0, 1) and (11/3, o< ), and moving

to the leftin (1, 11,/3). It is momentarily stationary (atrest), at ¢+ = |l and¢ = 11,/3.
The acceleration al(¢) = s"(¢r) = H3¢r — Tlis zero when v = T7/3.

Intervals 0 =< ¢ = T/3 T3 = r

Sign of ¢ = &7 — -+

Graph of s concave down concave up
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Second Derivative Test for Local Extreme

THEOREM 5 Second Derivative Test for Local Extrema

Suppose f” is continuous on an open interval that contains x = c.

1. If f'{e) = Oand f"(c) =< 0, then f has a local maximum at x = ¢.
2. If f'{c) = Oand f"(c) = 0, then f has a local minimum at x = c.

3. If f'(c) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

Strategy for Graphing y = f(x)
1. Identify the domain of f and any symmetries the curve may have.
. Find y" and y".

2
3. Find the critical points of f, and identify the function’s behavior at each one.
4. Find where the curve is increasing and where it is decreasing.

5

. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes.

7. Plot key points, such as the intercepts and the points found in Steps 3-5, and
sketch the curve.

EXAMPLE 6 Using f" and f" to Graph f
Sketch a graph of the function
Ffilx) = x* — 4x® + 10
using the following steps.
[a) Identify where the extrema of f occur.
[b) Find the intervals on which §f is increasing and the intervals on which f is decreasing.
[e} Find where the graph of f is concave up and where it i1s concave down.

[d)} Sketch the general shape of the graph for jf.

(e) Plot some specific points, such as local maximum and minimum points, points of in-
flection, and intercepts. Then sketch the curve.

Solution f is continuous since f'(x) = 4x® — 12x? exists. The domain of f is
(—oo, oo}, and the domain of ' is also (—o<, oo). Thus, the critical points of f occur
only at the zeros of f'. Since

Fix) = 4x® — 1222 = 433 x — 3)
the first derivative is zero at x = Oand x = 3.
Intervals x = 0 0 < x =3 3 < x
Sign of f’ — = +
Behavior of f decreasing decreasing Increasing
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(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremnum at x = 0 and a local minimum at x = 3.

(b) Using the table above, we see that f is decreasing on (—2><, 0] and [0, 3], and increas-
ing on [3, oo},
() f"(x) = 12x% — 24x = 12x(x — 2)iszeroatx = 0 and x = 2.

Intervals x == 0 0= x =2 2 =<x
Sign of f7 + — +
Behavior of f concave up concave down concave up

We see that f 1s concave up on the intervals (—oo,0)and (2, oo ), and concave down on
(0, 2).

(d) Summarizing the information in the two tables above, we obtain

x =<0 0 << x <2 2 <x <3 3 =<x
decreasing decreasing decreasing ncreasing
concave up concave down concave up concave up

The general shape of the curve is

General shape.

decr decr

| | decr | incr
| I I
conc | conc | conc | cone
up I down I up I up
| | |
0 \ 2 \ 3 /
| | |
infl infl local
point point min

(e} Plotthe curve’s intercepts (if possible) and the points where »* and »" are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of f. ]

¥
1
= —4x? + 10
20 -

15 -
(0, 100
Inflection

! 10
point s L
1 1 I I I -
=1 0 1 2 B
=% [ Inflection
—10 | point

—15
(3. =17»
Local

i i o

=20 =

FIGURE 4.30 The graph of f(x) =
xt — 4ax?® + 10 (Example 6).
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EXAMPLE 7 Using the Graphing Strategy

Sketch th h of f(x) G + 1)°

etc e gra o X)) = ———
grap 1 + x2

Solution

1. The domain of f is ( —oo, oo ) and there are no symmetries about either axis or the
origin (Section 1.4).

2. Find ' and f".

) (x + 1}2 x-intercept at x = —1,
x) = ———"9 wv-intercept (» = 1} at
J“: 1 + x2 v =0
£ (1 + x2)-2(x + 1) — {x + 1) -2x
x) =
(1 + x2)2
_ 2([ — _‘rz} Critical poimts:
_(l+_t2}2 x=—1lLx=1
() = (1 + x2)7-2( —2x) — 201 — x2)[2(1 + x2)-2x)]
Fix) = (1 + _r2}4
4x(x2 — 3)
= 3.3 After some algebra
(1 + x)

3. Behavior at critical points. The critical points occur only at x = =1 where f'(x) = 0
(Step 2) since J° exists everywhere owver the domain of f. At x = —1,
F"(—1y =1 = 0 wvielding a relative minimum by the Second Derivative Test At
x=1,/"(1) = —1 = 0 vielding a relative maximum by the Second Derivative Test.
We will see in Step 6 that both are absolute extrema as well.

4. Increasing and decreasing. We see that on the interval (—2¢, —1) the derivative

f'x) =< 0, and the curve is decreasing. On the interval (—1, 1), f'(x) = 0 and the
curve is increasing: it is decreasing on (1, o¢) where f'(x) =< 0 again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is
alwawys positive. The second derivative f” is zero when x = — 3,0, and V3. The
second derivative changes sign at each of these points: negative on I[—DC-, — VE:I .
positive on (— V”?; D:I . negative on I({L VE:I . and positive again on I:VE‘ DC':I . Thus
each point is a point of inflection. The curve is concave down on the interval
(—DO., — VE:I . concave up on {— V3, {}:I . concave down on II{L V’E:I . and concave
up again on ( VE, DC-J .

6. Asympiotes. Expanding the numerator of f(x) and then dividing both numerator and
denominator by x2 zives

2
flx) = (x + 1)  x2 +2x + 1 - ; 1
- = = “Xpanding numerator
1 + x? 1 + x? I )

1+ (2/x) + (1/x2)
(1/x2) + 1

Dividing by x<

We see that f(x) — 17 as x — o and that f{x)— 1~ as x — —oo . Thus, the line
¥ = 1 is a horizontal asymptote.

Since f decreases on {(—oo, — 1) and then increases on (— 1, 1), we know that
f(—1) = 0 is a local minimum. Although § decreases on (1, o<}, it never crosses the
horizontal asymptote » = 1 on that interval (it approaches the asymptote from
above). So the graph never becomes negative, and f(—1) = 0 is an absolute mini-
mum as well. Likewise, f(1) = 2 is an absolute maximum because the graph never
crosses the asyvmptote v = 1 on the interval { —oc, —1), approaching it from below.
Therefore, there are no vertical asymptotes (the range of f is 0 = y = 2).

7. The graph of f is sketched in Figure 4.31. Notice how the graph is concave down as it

approaches the horizontal asyvmptote » = 1 as x — —20C | and concave up in its ap-
proach to vy = 1 asx — oo m
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2

1

.-" .

Point of inflection

where x = '3
2

(1.2)

-

\J

Horizontal
asymptote

1

-1
Point of inflection
where x = —™%'3
FIGURE 4.31

(Example 7).

The graph of » =

(x + 132
1 + x2

4.6 Indeterminate Forms and L.’Hopital’s Rule

if lim L&)
K=l g(x)
lim )
X il g(x)

Example: find

X—sIn X

Im—--=

K=l X3

THEOREM 6

Then

= lim

o0

=Em‘— ,then
0 o
f(x)
K= g(x)
. l—cosx . smx . cosx |
Im———=1m =lm = —
x—0 Ix° =[x = f 6

L'Hopital’s Rule (First Form)
Suppose that fla) = gla) = 0, that f'(a) and g'(a) exist, and that g'(a) # 0.

) f@
xX—*g g(x} g'(-ﬂ}‘

Proof Working backward from f'(«) and g'(a), which are themselves limits, we have

fx) — fla)

lim ———=5— fx) — fla)

f'la)  x—a - i X —a
g'(a) glx)—gla) e glx) — gla)
lim =——5— —x—a

= 1 flx) = fla) i flx) =0 i Jix)

T ili g(x) —gla) xoaglx) — 0 i gl)
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THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-

val [ containing a, and that g'(x) # Oon /if x # a. Then

L
@ e

assuming that the limit on the right side exists.

EXAMPLE 1  Using U'Hopital's Rule

3x — sinx 3 — cosx

a) hm = = =2
@) 20 x ! v=0
1

() Hm\fl+_r—I:2\fI+_r _1
=0 + I =g 2
VIt x— 1 — /2

(a) lm S
x— R

(1/2)(1 + x)™'2 — 12

a }l—lﬂr 2y
—(1/4)(1 + x)72
= lim = —
x—0 2
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Mot — limit is found.



